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ABSTRACT

This article is one in a series describing the functionality of the Flow-Following, Finite-Volume Icosahedral

Model (FIM) developed at NOAA’s Earth System Research Laboratory. Emphasis in this article is on the

design of the vertical coordinate—the ‘‘flow following’’ aspect of FIM. The coordinate is terrain-following

near the ground and isentropic in the free atmosphere. The spatial transition between the two coordinates is

adaptive and is based on the arbitrary Lagrangian–Eulerian (ALE) paradigm. The impact of vertical reso-

lution trade-offs between the present hybrid approach and traditional terrain-following coordinates is dem-

onstrated in a three-part case study.

1. Introduction

The last few decades have seen significant advances in

numerical weather prediction (NWP). The skill of to-

day’s NWP models owes much to improved closure

schemes for physical processes that are too short lived or

too small in scale to be resolved by amodel’s space–time

mesh. Higher numerical accuracy, made possible pri-

marily by faster computers but to some degree by new

techniques for solving partial differential equations, also

had a large impact on forecast skill.

Numerical accuracy is typically expressed in terms of

the truncation or discretization error, defined as the

extent to which individual terms in a differential equa-

tion aremisrepresented in a numerical model because of

grid resolution limits. There are at least three ways to

reduce the truncation error: one can 1) refine the grid,

2) approximate spatial and temporal derivatives in a

more precise way, or 3) optimize the placement of grid

points in the space–time domain.

TheNWPFlow-Following, Finite-Volume, Icosahedral

Model (FIM) that was recently developed by the National

Oceanic andAtmospheric Administration (NOAA) Earth

System Research Laboratory (ESRL) takes advantage

of recently developed ideas about gridpoint placement—

the third alternative just mentioned. Specifically, FIM

uses the icosahedron, a near-spherical body composed

of 20 equilateral triangles, as a basis for horizontal grid

layout, while in the vertical it uses a coordinate with a

strong Lagrangian (hence ‘‘flow following’’) flavor. The

focus of the present article is on the vertical coordinate

in FIM.

2. History

Physical reasoning suggests that entropy or a variable

related to it, such as buoyancy, is the most appropri-

ate candidate for a Langrangian vertical coordinate in

modeling stratified, quasi-adiabatic flow. The relation-

ship between buoyancy and available potential energy

assures that isentropic coordinate layers cannot steepen

without a source of energy; this provides an important,

although certainly not universal, safeguard against fold-

ing of coordinate surfaces that would otherwise bring the

simulation to a quick halt.

The advantages of analyzing atmosphericmotion in the

free atmosphere in an isentropic reference frame have

been thoroughly discussed in the literature starting with
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Rossby and Collaborators (1937), Rossby (1940), and

Kleinschmidt (1950). Their arguments need not be re-

peated here. Likewise, the rationale for using isentropic

coordinates in NWPmodels has been laid out repeatedly

(e.g., Eliassen and Raustein 1968; Bleck 1974; Hsu and

Arakawa 1990; Benjamin et al. 2004). The list of potential

advantages of isentropic modeling compiled by those and

other authors is long, and there is not much we can add to

it at this time.

Isentropic NWP models came into being in the 1960s,

but it is fair to say that ‘‘pure’’ isentropic coordinate

models (those that use entropy as vertical coordinate

throughout the model domain) have not withstood the

test of time because of their inherent inability to provide

vertical resolution in unstably stratified air columns.

Complexities associated with coordinate–ground inter-

sections also were, and continue to be, a deterrent to pure

isentropic coordinate modeling.

Early experiments with isentropic models were con-

ducted to simulate baroclinic instability with an eye on

short-rangeweather prediction. Sincemodeling of diabatic

forcing was not essential in that context, the intersection

of coordinate surfaces with the ground—unavoidable

in baroclinic flow—was regarded as the main numerical

challenge. Eliassen and Raustein (1968), in their pioneer-

ing work on primitive equation isentropic modeling, chose

to track coordinate–ground intersections by solving an

advection equation for surface potential temperature us:

›u
s

›t
1 v

s
� $u

s
5 0. (1)

(Here, vs is the surface wind vector and $ is the two-

dimensional gradient operator.) Although justifiable at

the time, this strategy created a redundancy problem

because isentropic coordinate models typically contain

a second equation predicting the location of coordinate–

ground intersections, namely, the continuity equation

for isentropic layer thickness Dp:

›Dp

›t
1$ � (vDp)5 0. (2)

To understand why this is so, onemust keep in mind that

the linemarking the intersection of an isentrope with the

ground also marks the edge of the region where the

thickness Dp of the coordinate layer beneath it is zero.

The evolution of the Dp field in the vicinity of the in-

tersection line therefore provides information about

where the line is moving.

Obtaining accurate solutions of (2) in the transition

region between zero and nonzero Dp values is numeri-

cally challenging. Since the solution of (1) is subject to

numerical errors as well, the two equations do not al-

ways agree on where a coordinate surface intersects the

ground at any given time. The resulting discrepancies act

at best as a source of model noise; at worst, they lead to

numerical instability.

The problem just described spawned attempts in the

1970s to improve the treatment of coordinate–ground

intersections by inserting a set of terrain-following co-

ordinate surfaces, commonly referred to as s surfaces

(Phillips 1957), between the ground and the isentropic

domain (Deaven 1976; Uccellini et al. 1979; Friend et al.

1977; Bleck 1978b). In all of these schemes, with the ex-

ception of schemeDofBleck (1978b), the two coordinate

domains overlap (i.e., coordinate surfaces belonging to

one domain intersect those belonging to the other). This

requires interpolation. Scheme D, having no overlaps,

leads to a particularly simple set of model equations,

making it easy to formulate them in rigorously conser-

vative form, but it has shortcomings of its own. The

Uccellini et al. (1979) scheme and a variant of Bleck’s

scheme D are in use today in different versions of the

University of Wisconsin global model (Zapotocny et al.

1994; Schaak et al. 2004).

The decade of the 1980s saw some progress in the

related field of ocean circulation modeling with an

entropy-related vertical coordinate. Specifically, Bleck

and Boudra (1981) developed a coordinate system that

is mainly isopycnic but allows coordinate layers to turn

into constant-thickness layers near the sea surface to

overcome the massless-layer problem associated with

modeling baroclinic ocean states. This may have been

the first time that arbitrary Lagrangian–Eulerian (ALE)-

like coordinates (Hirt et al. 1974)were used in geophysical

modeling.

Increasingly skillful schemes for avoiding coordinate–

ground intersections were developed in the 1990s (Bleck

and Benjamin 1993; Konor and Arakawa 1997; Johnson

and Yuan 1998; Webster et al. 1999). These more recent

schemes resemble scheme D of Bleck (1978b) in the

sense that they avoid overlaps between a purely isen-

tropic and a purely isobaric or terrain-following sub-

domain. They differ among each other primarily in how

spatially abrupt they allow the transition between non-

isentropic and isentropic coordinate representation to

be. Various aspects of these schemes will be discussed

later in greater detail.

A parallel effort to build purely isentropic or iso-

pycnic models free of the redundancy implied by jointly

solving (1) and (2) was brought to a conclusion (Bleck

1984; Bleck and Boudra 1986) with the advent of the

flux-corrected transport algorithm (Boris andBook 1973).

This scheme for the first time yielded well-behaved so-

lutions of the continuity equation in transition zones
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between zero and nonzero layer thickness where under-

and overshoots (especially negative Dp values) are par-

ticularly detrimental to numerical stability. An alternative

approach to pure isentropic modeling, advocated by Hsu

andArakawa (1990), is to compute horizontal mass fluxes

using the Takacs (1985) advection scheme. Since this

scheme does not enforce positive definiteness as rigorously

as flux-corrected transport does, Hsu and Arakawa (1990)

had to keep a small amount of mass in coordinate layers

that in the aforementioned models are allowed to become

truly massless.

Having assembled a set of numerically resilient tools

for handling the intersection of isentropes with the

ground, the modeling community turned its attention

to the second problem in isentropic modeling: the need

to accomodate unstable lapse rates associated with

diabatic surface forcing. Since both problems manifest

themselves at or near the surface, the remedies de-

veloped to address the coordinate–ground intersection

problem also were useful in alleviating the unstable-

lapse-rate problem. Models general enough to accom-

odate diabatic surface forcing (Zhu et al. 1992; Bleck

and Benjamin 1993; Zapotocny et al. 1994; Konor and

Arakawa 1997; Johnson and Yuan 1998; Schaak et al.

2004; Benjamin et al. 2004) therefore resemble the ones

mentioned earlier in their vertical layout. The salient

aspect of all of these approaches is that they ‘‘hybridize’’

the isentropic coordinate (i.e., strike a compromise be-

tween Lagrangian and Eulerian vertical grid represen-

tation). This is also true for the present model and

reflects our conviction that, aftermore than three decades

of isentropic/isopycnic model development, hybridiza-

tion has emerged as the optimal strategy. In fact, the focus

of isentropic model development in the last 20 years has

been entirely on hybridization details.

3. Brief review of FIM dynamics

The horizontal aspects of the dynamical core of FIM

are described in detail elsewhere (Lee and MacDonald

2009), but a brief review is needed here to put the ensu-

ing discussion of the vertical coordinate into context.

Readers unfamiliar with equations in layer and/or gen-

eralized vertical coordinate form are referred to Starr

(1945), Kasahara (1974), and Bleck (1978a).

FIM solves a systemof layer-integrated, hydrostatically

approximated conservation equations for momentum,

mass, thermal energy, and gaseous as well as liquid or

frozen water content. Its so-called physics components

thatmodel diabatic forcing of the atmosphere—primarily

water phase changes, radiation, vertical turbulentmixing,

and surface fluxes—were imported from the Global

Forecast System (GFS) of NOAA’s National Centers for

Environmental Prediction (NCEP). Details about their

implementation will be the topic of a forthcoming paper

on FIM’s performance in general.

In the following, s is the vertical coordinate, v is the

(Cartesian) horizontal velocity vector taken as vertically

constant within an s layer, $s is the two-dimensional

gradient operator at s 5 const, P 5 cp(p/p0)
R/cp is the

Exner function, u 5 cpT/P is the virtual potential tem-

perature,M5 gz1Pu is theMontgomery potential, z is

the vorticity (i.e., the vertical or k component of the

velocity curl vector), _u is the net diabatic heating, and F

is the sum of frictional forces.

The layer-integrated conservation equations, supple-

mented by the hydrostatic equation, are given as follows.

The momentum conservation equation is

›v

›t
1(z1 f )k3v1

1

Dp
_s
›p

›s

� �
2

(v̂
2
�v)� _s

›p

›s

� �
1

(v̂
1
�v)

� �

1$
s

M1
v2

2

� �
�P$

s
u5F. (3)

Here, indices 1 and 2 denote the upper and lower in-

terface of a coordinate layer, and Dp 5 p2 2 p1. The

vertical advection terms (those involving _s) make ref-

erence to interface velocity values denoted here by v̂.

Since v is discontinuous at interfaces, the definition of v̂

is to some extent arbitrary and in practice depends on

the chosen vertical advection scheme. The equations for

mass conservation and thermal energy conservation are,

respectively,

›Dp

›t
1$

s
� (vDp)1 _s

›p

›s

� �
2

� _s
›p

›s

� �
1

5 0 and

(4)

›(uDp)

›t
1$

s
� (uvDp)1 _s

›p

›s
û

� �
2

� _s
›p

›s
û

� �
1

5 _uDp.

(5)

As before, the caret in (5) denotes interface values

needed in the vertical transport terms. The method by

which they are constructed (upstream, centered, . . .) de-

termines properties such as monotonicity and diffusive-

ness of vertical advection in the model. Equations for

other mass field tracers (moisture, etc.) have the same

form as (5). Last, the hydrostatic equation is

›M

›u
5P. (6)

Given the possibility of large temporal changes in

vertical grid spacing, much attention is paid in FIM to

conservation of integral properties (i.e., to the elimina-

tion of spurious internal sources and sinks for mass and

tracer amounts). Solving tracer transport equations in
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flux form, as indicated in (5), is one obvious requirement

to account for leading-order changes in Dp. (Advective

forms are acceptable as long as they are obtained by

subtracting from the tracer flux equation the mass con-

tinuity equation multiplied by the tracer.) In addition,

the various terms in the prognostic equations associated,

respectively, with lateral transport, diabatic forcing,

vertical gridmaintenance, and vertical transport must be

evaluated in FIM sequentially for the sake of main-

taining a simple and easily understood framework for

global conservation.

The specific sequence of operations to advance the

model state by one time step, closely following that in

the hybrid-coordinate ocean model HYCOM (Bleck

2002), is as follows:

1) The variables u, y, Dp, and q (where q summarily

refers to mass field tracers such as u, humidity, liquid

water content, etc.) are updated disregarding all source

and vertical transport terms. Layer interfaces are

treated as impermeable during this step.

2) Changes to u, y, and q due to model physics are cal-

culated. The physics processes act on the transitional

state in which themodel is left after completing step 1.

The vertical grid remains frozen during step 2.

3) The Dp field resulting from step 1 is modified, where

appropriate, by the vertical grid generator described

in detail below. We will refer to this as the regridding

step.

4) Vertical transport terms necessitated by changes

made to Dp in step 3 are evaluated, and their effect is

added to the u, y, and q field obtained in step 2. This is

the so-called remapping step.

In the special case of zero physical forcing and no

action by the grid generator, the transitional model state

reached in step 1 becomes the final one.

A few remarks are in order concerning the retrieval of

u from the values uDp and Dp obtained in step 1 by

solving the horizontal transport portions of (5) and (4).

The procedure is potentially ill conditioned in FIM be-

cause Dp is not bounded away from zero. To avoid cre-

ating nonphysical u values, we require the ratio (uDp)/Dp
to remain within the range spanned by the old u values at

and near the point in question. While this introduces an

element of nonconservation into the transport process,

the problem is largely academic because it only occurs

wheremass flux divergence removes a significant portion,

but not all, of the mass from a grid cell. A number of

‘‘engineering’’ fixes are available, such as distributing

among neighboring cells the u amount gained or lost by

the clipping process. In present FIM applications, this

amount has been found to be too small (in the integrated

sense) to warrant corrective action.

4. The ALE coordinate

FIM belongs to a category of circulation models re-

ferred to as layermodels, meaning that vertical spacing of

grid points is governed, to varying degrees, by converging

or diverging horizontal mass fluxes. Since the prognostic

equations resemble the shallow-water equations—even

in the sense that variables carried within individual layers

are for many intents and purposes treated as vertically

constant, layer models are also referred to as stacked

shallow-water models.

The hybrid grid in FIM resembles that of the Rapid

Update Cycle (RUC; Benjamin et al. 2004; Bleck and

Benjamin 1993), but vertical staggering of variables is

different because, while RUC conserves mass, it does

not rigorously conserve other mass field constituents. In

RUC, u is carried on interfaces as in the Charney–

Phillips grid (Arakawa and Moorthi 1988). This stag-

gering convention, which is also followed in the Konor

and Arakawa (1997) model, makes restoration of u to

its prescribed coordinate value (see below) somewhat

easier in RUC than in FIM, which uses Lorenz-type

staggering (Arakawa and Moorthi 1988). FIM stagger-

ing replicates the layer treatment in HYCOM (Bleck

2002) in which only pressure and geopotential are car-

ried on interfaces while all other variables, including

tracers andMontgomery potential, are defined in layers.

The vertical coordinate in FIM is designed around the

idea that coordinate layers conform to isentropic layers

except in locations where these intersect the earth’s

surface. There, layers are locally redefined as terrain-

following (s coordinate) layers. An individual coordinate

layer can be isentropic in one geographic region and

terrain-following in another.

The hybridization concept employed here and in

RUC differs from hybrid schemes developed elsewhere

(Bleck 1978b; Pierce et al. 1991; Zapotocny et al. 1991,

1994; Konor and Arakawa 1997; Johnson and Yuan

1998; Webster et al. 1999) in that it relies on locally

mandated adjustments of vertical grid spacing rather

than on a fixed formula typically consisting of a weighted

average of two or more traditional coordinate choices.

The vertical coordinate in FIM is best described as ar-

bitrary Lagrangian–Eulerian (Hirt et al. 1974), but we

have added a mechanism for keeping coordinate layers

aligned with their designated target isentropes over time

whenever and wherever this does not conflict with

minimum layer-thickness constraints. The original ALE

scheme (Hirt et al. 1974) only concerned itself with the

maintenance of nonzero grid spacing in Lagrangian co-

ordinate simulations. Coordinate ‘‘maintenance’’ in the

sense of keeping coordinate surfaces aligned with iso-

surfaces of some quasi-conservative physical property is
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essential if an ALE-type circulation model is to be used

in long-range weather or climate simulation.

While the flexibility of coordinate placement in ALE-

type schemes is disconcerting to some users because grid

point location in model space cannot be expressed in

terms of an analytic formula, the scheme excels in maxi-

mizing the size of the purely isentropic subdomain. This

follows from the scheme’s ability to set the height where

the s coordinate gives way to the u coordinate in each

geographic location separately (i.e., unencumbered by

global considerations). Thus, while the lowest purely is-

entropic coordinate surface in schemesDofBleck (1978b)

and Zapotocny et al. (1994) in a global model must be

selected with the highest summertime temperature over

the Himalayas in mind, the ALE approach contains no

such restrictions. Furthermore, the problem of coordi-

nate surface intertwining due to inappropriately chosen

coordinate blending coefficients (Zhu et al. 1992) does

not arise in an ALE scheme.

FIMmanages the vertical grid structure as follows. If

a given layer is ‘‘on target’’ (meaning that u matches

the target potential temperature assigned to this layer)

and if, in addition, the two-dimensional shallow-water

continuity equation given in (2) [which is (4) without the _s

terms] yields a layer thickness Dp that does not fall be-

low a predetermined minimum Dpmin, the Dp value ob-

tained from (2) is accepted. In other words, FIM sets

_s 5 0 in this case, meaning that it treats the interfaces

above and below the layer in question as material. If

one of the above conditions is not met, the grid gen-

erator (see following section) takes over and changes

›Dp/›t in a way that either maintains minimum thick-

ness or, if the layer has become separated from its

target potential temperature, moves it closer to it. In

these situations, the selected Dp tendency is inserted

into the full continuity equation given in (4), which at

this point becomes a diagnostic equation for the in-

terlayermass fluxes _s›p/›s. The latter are used to vertically

advect momentum and other variables.

The above process is complicated by the need to in-

clude conditions in at least two adjacent layers when

deciding on the value of _s›p/›s on a given interface.

However, as long as Dpmin . 0 is imposed only on layers

at the bottom or top of the column, the test for nonzero

_s›p/›s can be carried out recursively by a single sweep up

or down the column (i.e., it does not require iteration).

In this narrow sense, grid maintenance in the present

ALE-like scheme appears to be slightly simpler than

that described in section 3f of Konor and Arakawa

(1997), which requires iterations.

The process described above can be summarized as

follows. All hydrostatic models infer the vertical compo-

nent of motion from the vertically integrated horizontal

mass flux divergence. The grid generator in an ALE-type

model divides this material vertical motion into two com-

ponents: vertical motion of the coordinate surface and

vertical air motion relative to it:

vertical

motion

of

interface

0
BBB@

1
CCCA1

vertical

motion

through

interface

0
BBB@

1
CCCA5

vertically

integrated

horizontal

mass-flux

divergence

0
BBBBB@

1
CCCCCA
. (7)

The decision whether to accept the solution of (2)—

that is, whether to balance the right-hand side of (7) by

only the first term or by some combination of both

terms on the left—is made by the grid generator at each

grid point and each time step individually. The FIM grid

generator actually performs both this task and the one

listed earlier as step 4: it carries out the vertical remap-

ping of all prognostic variables to the modified grid. As

noted before, remapping is formally equivalent to vertical

advection because it is driven by nonzero values of _s.

However, since vertical displacement of atmospheric

constituents due to actual air motion is already accounted

for in the heaving and slumping of coordinate layers in

step 1, vertical advection via the _s terms in the prognostic

equations is best viewed as a secondary property re-

distribution necessitated by coordinate surfacesmigrating

through resting air. With the atmosphere conceptually

‘‘frozen’’ in time during this redistribution, remapping

should conserve certain integral properties such as col-

umn integrals of momentum, thermal energy, and so on.

Turbulent vertical mixing is typically parameterized

in large-scale atmospheric models by solving a vertical

diffusion equation with an eddy diffusivity coefficient

designed to incorporate the effects of stratification, wind

shear, and so on. In an isentropic framework, one of the

diffused quantities is an independent variable, namely,

the vertical coordinate u. The approach taken in FIM to

deal with this peculiarity of isentropic modeling is de-

scribed in appendix A. The scheme is primarily em-

ployed as a safeguard against layer collapse during

frontogenesis. One may view it as a rudimentary at-

tempt at qualitatively parameterizing the effect of clear-

air turbulence.

5. The vertical grid generator

a. Background

Owing to differences in the vertical staggering of

variables, not all schemes existing today for maintaining

the vertical grid structure inALE-type hybrid-isentropic
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layer models are interchangeable. The scheme developed

for RUC (Bleck and Benjamin 1993; Benjamin et al.

2004) in particular cannot be used directly in FIM. In-

stead, the technology suitable for the staggered FIM grid

had to be imported from HYCOM.

The first-generation HYCOM grid generator, whose

design principles are described in detail in Bleck (2002)

but date back to Bleck and Boudra (1981), has been

modified and tuned over the years to address grid de-

generacies that came to light as the range of applications

of HYCOMgrew. This tuning has added branches to the

decision tree in the original algorithm, creating a situa-

tion inwhich the underlying logic is no longer transparent

to the user. Complexity in the grid generator discourages

experimentation and adaptation of HYCOM/FIM to

special modeling tasks, and hence should be avoided.

The algorithm described below represents an attempt

to get ‘‘back to basics’’ when moving layer interfaces for

the sake of maximizing the part of the atmosphere

represented by isentropic layers while at the same time

subjecting layers to minimum-thickness constraints. In

the first-generation grid generator, each grid point is

inspected and adjusted recursively in light of its distance

to grid points above and below, using a variety of semi-

empirical criteria. The algorithm proposed here is more

straightforward in that it begins by transforming a given

hybrid stair-step u profile into a purely isentropic one

(i.e., into a stair-step profile whose u levels are prescribed

beforehand (step 1 below). Depending on the stratifica-

tion and u range in the original profile, this process can

produce massless (zero thickness) layers at the top and

bottom of the column. Massless layers that occur at the

ground are subsequently inflated to a prescribed min-

imum thickness (step 2 below).

Differences between the resulting hybridized layer

interface pressures and those of the input profile imply

mass exchange among layers. Tracers and momentum

must then be exchanged between layers as well (step 3

below). Any one of the standard conservative advection

schemes can be used for this task.

b. Step 1: Transformation of nonisentropic stair-step
u profiles to isentropic coordinates

Let uin(p) be a piecewise-constant (‘‘stair step’’) ver-

tical profile of u. Both the step width Duin and the step

height Dp can vary from step to step. Our task is to

transform uin(p) into another stair-step profile differing

from the original one in that the location of the ‘‘risers’’

on the u axis is prescribed. Ideally, the transformation

should be accomplished without perturbing the potential/

internal energy of the column. Another quantity worth

preserving is the geopotential height of the column, be-

cause a transformation that changes the column height is

likely to set off external gravity waves. In the following

we will adopt a height conservation constraint, which

is done by switching from p to P as vertical coordinate

(see section 5e below).

Let uk (k 5 1, . . ., n, uk11 . uk, k increasing upward)

mark the points on the u axis where we want the new

risers to be placed. These points represent the desired

coordinate values for the isentropic model domain while

uin(P) represents the model state at the completion of

step 2 above. We require that the uk values span the u

range of the input profile:

u
1
# u

in
(P) # u

n
for all P (8)

and that the input profile be monotonic.

As shown in appendix D of Bleck (2002), the in-

terfaces in the transformed profile are given by

P
k11/2

5
1

u
k11

� u
k

ðu
k11

u
k

P
in
(u) du (k5 1, . . ., n� 1),

(9)

where Pin(u) is the inverse of uin(P).

If condition (8) is violated, evaluation of (9) is post-

poned until the offending input layer is brought into

compliance by ‘‘diluting’’ it with mass from adjacent

layers. Persistent heating at the model top, for example,

is thereby transformed into a gradual thickening of the

uppermost coordinate layer.

The transformation of an arbitrary profile uin(P) into

a stair-step curve with risers at prescribed values uk is

illustrated in Fig. 1. To make a clear visual impression of

the grid generator’s action, we have chosen an input

profile (thin solid curve) that bears little resemblance to

the output profile (dashed). Such large differences only

occur during model initialization when the grid gener-

ator is employed to transform GFS temperature profiles

into hybrid-isentropic space.

FIM initialization is outside the scope of the present

article. Nevertheless, an input profile chosen from a set

of actual GFS-supplied input profiles provides a wel-

come opportunity to illustrate not only the action of the

grid generator but also an important step in the model

initialization procedure. Note that the 10-K spacing of

the uk values in Fig. 1 is far coarser than the resolution

actually used in FIM.

c. Step 2: Enforcement of layer-thickness constraints

Suppose the prescribed potential temperature values

u1, u2, . . ., in the output profile cover a wide enough

range to yield uk , uin for some k . 1. In this case, (9)

will yield P1/2 5 P3/2 5 � � � 5 Pk11/2 (i.e., layers 1, . . ., k

in the transformed profile will be massless). Likewise, if
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uin , uk for some k , n, layers k 1 1, . . ., n will be

rendered massless (Pk11/2 5 � � � 5 Pn11/2).

The strategy in FIM is to accept massless layers aloft

but to always inflate massless layers at the bottom of the

grid column. Layer inflation rules can be as simple as

specifying a constant minimum thickness DP0. In this

case the set of isentropic interface valuesPk11/2 obtained

from (9), to be identified here as P̂k11/2 to distinguish

them from the final ‘‘hybridized’’ values, are recursively

subjected to the constraint

P
k11/2

5 min(P̂
k11/2

, P
k�1/2

� DP
0
) (k5 1, 2, . . . ).

(10)

Note that DP0 can easily be made layer- or latitude-

dependent or can be scaled by terrain height. Additional

refinements of the hybridization scheme are described in

appendix B.

d. Step 3: Vertical advection

The regridding process described above must be fol-

lowed by a remapping step in which model variables are

advected vertically in response to changes in interface

pressure. Borrowing from HYCOM, vertical advection

of momentum and tracers is currently handled by either

the piecewise linear method (PLM; van Leer 1974)

or the piecewise parabolic method (PPM; Colella and

Woodward 1984). Because of the potential presence of

massless or near-massless layers, fluid is permitted to

cross more than one interface during a given time step.

All variables mentioned are remapped in p space to

conserve their mass-weighted column integral.

Potential temperature is a special case. The regridding

process described earlier yields a new u distribution that

may be viewed as resulting from upstream or piecewise

constant advection in s space. To suppress the numerical

diffusivity implied by this low-order scheme, FIM actu-

ally discards the u field resulting from the regridding ex-

ercise and replaces it by a field vertically advected by

the same higher-order scheme that is used for the other

prognostic variables.

There is a price to be paid for inferring the amount of

mass transferred between layers from a piecewise con-

stant u distribution, as is done in (9), and subsequently

using a higher-order scheme to remap u. Neither will the

slab of air arriving in a layer have the potential tem-

perature needed to precisely restore that layer to target,

nor will the transfer leave u in the donor layer unchanged.

However, we find that the restoring algorithm allows

layers to lock onto their targets relatively quickly.

It is worth noting that the conservation properties

of the regridding/remapping algorithm are determined

during the remapping phase alone. Hence, regridding

can be based on P, as shown in (9), or on any other

function monotonic in pressure. The vertical coordinate

used during remapping is also at the discretion of the

user. FIM presently offers a choice between (p/p0)
k and

(p/p0)
11k (where k 5 R/cp) for remapping the u field.

The rationale for providing these two options is given in

the following section.

In Fig. 1, the process of remapping the input profile

(thin line) onto the new layer configuration including

several inflated bottom layers yields the heavy black curve.

This is the final outcome of the three-step procedure.

e. Conservation alternatives

It follows from (6) that the height of an air column can

be preserved during vertical remapping by using the

Exner function P as vertical coordinate. Unfortunately,

this choice does not allow us to satisfy another important

constraint: conservation of column-integrated internal

energy I 5
Ð
cyT dp and column-integrated potential

energy P 5
Ð
grz dz. (In an ideal gas in hydrostatic bal-

ance, internal and potential energy are proportional to

one another, so conservation of one entails conservation

of the other.) The incompatibility of column height con-

servation with internal/potential energy conservation

becomes clear if one writesP and I in terms of u and p and

compares the resulting expressions

I5
c
y
p
0

g(11 k)

ð
ud

p

p
0

� �11k

and (11)

FIG. 1. Example of vertical grid generation in FIM. Potential

temperature (K) is on the abscissa and Exner function is on the

ordinate. The thin solid line is the input profile uin(P), drawn here

as a continuous rather than stair-step curve for legibility. The

dashed line is the transformed, purely isentropic profile with uk
values spaced 10 K apart. The thick solid curve is the same profile

after inflation of massless bottom layers.
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P5
Rp

0

g(11k)

ð
ud

p

p
0

� �11k

(12)

(k5R/cp) with the formula for column height,
Ð
u dP, in

which u is integrated over a variable proportional to

(p/p0)
k. It is easy to see now that conservation of I and P

can be achieved during remapping of u by using (p/p0)
11k

as vertical coordinate but that this can only be done

at the price of violating the height preservation con-

straint. The relative importance of height versus internal/

potential energy conservation is hard to assess without

practical tests.

Other options exist. Lin (2004), in his intermittently

Lagrangian vertical coordinate scheme, chooses to con-

serve total energy during regridding and to treat layer

temperature as a diagnostic quantity. The reason for

giving priority to total energy conservation, as opposed to

internal/potential energy conservation, is that dissipation

of kinetic energy acts as a heat source. Whether vertical

regridding is the proper vehicle for modeling such dissi-

pative processes is a topic inviting further discussion.

f. An illustration

Some design options suitable for anALE coordinate in

atmospheric models are illustrated in Fig. 2. The figure

shows a meridional cross section (latitude increasing to

the left) that cuts across a typicalmidlatitude jet stream in

thermal wind balance with sloping tropospheric isen-

tropes. Three elements are combined in the figure. Solid

lines running across each panel represent layer interfaces.

Shaded contours represent zonal wind speed. Colors

filling alternate spaces between isotachs show potential

temperature. The purpose of the coloration is to indicate

where in the domain a given coordinate layer is isentro-

pic. The rendering is not exact because the columnwise-

steppy u field has been converted into a continuous field

and interpolated to p space to simplify plotting.

The top-left panel in Fig. 2 shows a layer configuration

typically seen in pure isentropic coordinate models like

those of Bleck (1984) and Zhu et al. (1992). Since FIM

evaluates lateral flux terms in (4) and (5) using the flux-

corrected transport scheme, which permits layer thickness

to go to zero, FIM can actually operate stably in the pure

isentropic mode depicted in that panel. The rationale for

building this capability into FIM was to remove numeri-

cal-stability related constraints on the choice of mini-

mum layer thickness.

Passing the configuration shown in the top-left panel of

Fig. 2 to the FIM grid generator yields the configuration

shown in the top-right panel. As described in detail

above, the grid generator inflates layers that intersect the

ground—the ones shown as massless layers in the top-left

panel—but leaves higher layers unmodified. The shallow

layers formed in this way near the earth’s surface are, of

course, no longer isentropic. A configuration similar to

this one but with much higher vertical resolution is used

in RUC (Benjamin et al. 2004) and in FIM. For illustra-

tive purposes, minimum layer thickness Dpmin in Fig. 2 is

set to 30 hPa. FIM and RUC typically use values in the

range of 2–20-hPa.

The bottom-left panel of Fig. 2 illustrates how the

ALE coordinate reacts to the presence of amountainous

feature like the Tibetan Plateau. To keep the mountain

from creating a nonisentropic coordinate cap extending

to jet stream levels, Dpmin is reduced over high terrain as

it would be in a s-coordinate model.

In the bottom-right panel of Fig. 2 we give an example

of how one could modify the ALE coordinate to opti-

mize layer spacing at low latitudes where cloud physics

parameterization schemes typically demand more uni-

form vertical grid spacing than that shown in the top-right

panel. A layer expansion feature like the one in the

bottom-right panel would be particularly desirable in

a model that uses an extremely low Dpmin for the sake

of maximizing isentropic grid representation in the ex-

tratropics. Given the large value of 20 hPa currently used

by FIM in all but the lowest s layers, refinements of this

type are not contemplated at this time.

Because of the continuous rendering of the steppy u

field, the color fields in Fig. 2 do not accurately reflect u

in each layer, as already mentioned. However, some

color irregularities in regions where interfaces have

been pushed up or down by the grid generator are the

result of vertical advection errors.

This brings up an important point. The flexibility of the

ALE scheme might compel a model architect to design

a coordinate system that requires interfaces to periodi-

cally move over large distances through the fluid. Such

a design, an obvious violation of the flow-following

concept, can lead to vertical advection and associated

dissipation errors that are far in excess of those typically

encountered in a fixed grid. One example of an ill-advised

ALEalgorithm is to attach a coordinate surface to the top

of the planetary boundary layer for the sake of cleanly

separating well-mixed from stratified air layers. Because

of the potentially large difference between day- and

nighttime boundary layer heights and the ensuing need to

move large amounts of air back and forth across the

pulsating interface, advantages gained by separating re-

gions of large and small vertical mixing are likely to be

lost. The best strategy is to make coordinate surfaces

either truly Lagrangian or, if that is impractical, to keep

them fixed in space.

There are situations in which not only time-dependent

but also space-dependent Dpmin values of the kind
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shown in the top-right panel of Fig. 2 must be avoided.

Consider, for example, a model in which the Sadourny

(1975) or Arakawa and Lamb (1981) approach is used

to formulate the momentum equations in potential

enstrophy–conserving form, with layer thickness Dp
taking the place of ›p/›u in the potential vorticity ex-

pression (z 1 f )(›p/›u)21. In the s coordinate sub-

domain, lateral variations imposed on Dp by the grid

generator will, in this case, introduce bogus lateral po-

tential vorticity gradients that can affect the flow evo-

lution inappropriately. FIM avoids this pitfall by using

vorticity, not potential vorticity, in (3). HYCOM uses

the Sadourny (1975) formulation but makes Dpmin

a function of the layer index only, effectively replacing

potential vorticity by absolute vorticity inside the p

coordinate subdomain.

6. A sensitivity study

Because the focus of this article is on the design of an

ALE-type vertical coordinate, readers might expect to

see results of experiments highlighting the performance

of the grid generator.While such experiments have been

carried out, and forecast quality has indeed been found

FIG. 2. Vertical–meridional cross section illustrating the functionality of the ALE-like coordinate in FIM. Solid lines are layer

interfaces, and shaded contours are isotachs (m s21). Colors indicate potential temperature (K). The ordinate is pressure (hPa). The

horizontal extent is 5000 km.
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to depend on parameters such as minimum layer thick-

ness, a scientifically meaningful discussion of these ex-

periments will require exploring the fundamental question

of how sensitive today’s cloud physics and boundary layer

parameterizations are to deviations from the vertical

resolution provided by conventional NWP models. This

question, though eminently important, is beyond the scope

of the present article.

One option would have been to present results gained

with a FIM version stripped entirely of its physics com-

ponents. However, we argue that the results presented

below, which highlight FIM’s capabilities as a full-fledged

global medium-range prediction model, are more infor-

mative than process studies dwelling on coordinate con-

figurations in idealized adiabatic flow, especially since

such experiments, which naturally were carried out dur-

ing the early stages of FIM development, did not reveal

ALE-related numerical issues.

In light of the above, the material presented below

dwells on capabilities of FIM associated with its isen-

tropic coordinate, rather than on the particulars of low-

level s-layer packing or the s–u transition.

A displaced fluid parcel that does not experience

a buoyancy force driving it back to its original location is

likely to remain in contact with its new surroundings lon-

ger than it otherwise would be. This gives the parcel some

extra time to exchange properties with the surrounding

fluid (Montgomery and Spilhaus 1941, p. 281). Conse-

quently, turbulent mixing in stratified fluids takes place

preferentially along surfaces of constant potential buoy-

ancy (i.e., buoyancy corrected for compressibility effects).

With potential buoyancy and entropy being synony-

mous (or nearly so) in the atmosphere, turbulent exchange

tends to minimize isentropic gradients of properties such

as momentum (Rossby and Collaborators 1937). Repli-

cating this process in a numerical model is not easy if

coordinate surfaces do not coincide with isentropes. Dis-

persion errors associated with horizontal transport in a

model tend, over time, to destroy property contrasts on

whichever surfaces the transport is being carried out.Only

if the transport equations are solved on isentropic surfaces

can this numerical dispersion error be hidden behind

what wemay call a ‘‘smoke screen’’ of naturally occurring

mixing. Being able to do this is especially advantageous in

long-term simulations of statistically stationary or slowly

varying states that in nature result from a balance among

external forcing, transport, and turbulent mixing.

Note that the above argument refers to numerical

errors associated with lateral transport—that is, errors

caused by the dispersive properties of the horizontal

advection operator. Errors arising during evaluation of

explicit mixing terms (of which FIM is free) can also be

important. However, these can be reduced—to some

extent at least—by aligning the main axes of the mixing

tensor with isentropic surfaces (Redi 1982). An equiva-

lent strategy to project the effect of numerical dispersion

in the transported field onto isentropic surfaces has not

yet been developed.

The flexibility of the ALE coordinate allows us to shed

light on the correctness of the assertion that numerical

accuracy of transport processes benefits from isentropic

coordinate representation. We will do this by changing

the vertical coordinate in FIM from hybrid s–u to a more

traditional combination of s and p and will look for at

least anecdotal evidence that simulations based on the

first-mentioned coordinate yield more coherent patterns

of dynamically relevant quantities than simulations based

on the latter. This work is complementary to earlier work

by, among others, Johnson et al. (1993) and Benjamin

et al. (2004), but sheds light on fluid dynamics phenomena

that are not specifically treated in those studies.

A tracer well suited for this purpose is the vorticity z5
›y/›x2›u/›y. Even though z is neither explicitly advected

in primitive equation models nor rigorously conserved,

the fact that vorticity is composed of spatial derivatives of

the velocity field and interacts with the circulation in a

two-way mode makes it a particularly sensitive indicator

of forecast errors. We will focus in the following on the

process of troposphericRossbywave breaking (McIntyre

and Palmer 1985), also referred to as vortex rollup

(Dritschel and Polvani 1992) or, in synoptic meteorolo-

gists’ parlance, cutoff-low formation.

Three synoptic cases were analyzed in detail for this

article. Space limitations permit us to present only one

of them in detail. Limited results from the other cases

will be included to indicate that trends in forecast ac-

curacy as functions of horizontal resolution and vertical

grid were not unique to the first case.

The vortex rollup process and the failure of some

model versions to simulate it accurately were found to be

depictedmost succinctly by the vorticity and geopotential

height distribution on the 300-hPa isobaric surface. We

will therefore confine our attention to 300-hPa flow pat-

terns and will first focus on forecasts over North America

extending 3.5–5 days from the initial time of 0000 UTC

19October 2008. (The other two cases depict vortex rollup

events over Europe 4 weeks later and over the Southern

Ocean in late austral summer.)

Eight FIM forecasts were carried out, four using the

native FIM coordinate and four using the s–p coordi-

nate introduced to the operational GFS in May 2007.

The switch from the former coordinate to the latter is

accomplished in FIM by replacing the standard hybrid-

isentropic grid generator by one that simply restores

interface pressures to the values used in the GFS. No

other changes are made to the model.
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The forecasts within each group of four differ by hori-

zontal grid resolution. As outlined in section 3a of Lee and

MacDonald (2009), recursively bisecting the sides of the 20

triangles in the icosahedron quadruples the number of

hexagonal cells on the sphere. In the experiments reported

here, the number of cells ranges from;10 000 (referred to

as G5 resolution: 5 bisecting steps) to ;655 000 (G8: 8

bisecting steps). The mesh size is ;240 km at G5 resolu-

tion and ;30 km at G8 resolution. Since icosahedral sur-

face elements have to be projected outward onto the

enclosing sphere, mesh size varies by approximately 15%.

The figures for case 1 are organized as follows. Results

obtained by FIM configured with its standard hybrid

s2u coordinate are displayed in the top four panels of

Figs. 3–6. Corresponding results obtained by substitut-

ing the hybrid s–p coordinate for the native FIM co-

ordinate are shown in the bottom four panels of each

figure. As already mentioned, coordinate values in the

s–p grid are identical to those used by the GFS. Both

grids consist of 64 layers. The noisy height field seen in

some figures is partly due to deficiencies in vertical and

horizontal interpolation.

We begin by showing in Fig. 3 the rollup process as

simulated at the highest available resolution of 30 km

(G8). The forecasts clearly depict the universal process

by which mixing in fluids takes place: initally compact

fluid elements are continually stretched into long, thin

filaments that create sharp property gradients subse-

quently eroded by molecular diffusion. How important

explicit simulation of this stretching or stirring process

is for climate modeling is an important open question.

There is no doubt, however, that such explicit simulation

is important in NWP because property gradients formed

by filamentation often spawn severe local weather events.

Figure 3 indicates that the s–u forecast carries the fil-

amentation process somewhat farther than does the s–p

forecast. In fact, it may carry it too far. A comparison with

observed conditions on 23October 2008 (not shown here)

indicates that FIM, using its native coordinate, actually

overintensifies the cutoff vortex. Further experimentation

will be required to determine whether omission of explicit

subgrid-scale mixing terms in FIM is an occasional detri-

ment to forecast accuracy.

The next figures depict the rate at which the fila-

mentation and rollup process is degraded with lower

grid resolution. At G7 (60 km) resolution (Fig. 4), the

vorticity streamer in the s–u forecast is seen to maintain

its integrity, even to the extent that its spiral structure at

120 h is better defined in this forecast than in the pre-

vious one. Larger changes between Fig. 3 and Fig. 4 are

noticeable in the s–p forecast, and these changes fore-

shadow a precipitous decline in filament definition with

decreasing grid resolution in s–p mode. The 300-hPa

surface at 120 h in the s–p forecast has risen by 10 m as

a result of the resolution change, and the vortex is lo-

cated too far to the west.

It is worth noting that even in a perfect model simu-

lation, the filament patterns in s–u and s–p forecasts

would differ because the plotted vorticity is based on

winds differentiated at constant u in one model version

and at constant p in the other. (At 300 hPa, the GFS co-

ordinate is nearly isobaric while FIM’s hybrid-isentropic

coordinate is solidly isentropic.)

The trend suggested by Figs. 3 and 4 continues asmesh

size is doubled again, to 120 km (Fig. 5). At this reso-

lution, the vorticity streamer in the s–u forecast loses its

distinctive spiral character, but its forward edge still

shows signs of being wrapped around the vortex at

120 h. In the s–p forecast at 120-km resolution, the

vorticity field is devoid of sharp maxima and the rollup

process is greatly weakened. The trough line develops

a serious tilt toward the southwest.

At 240-km spatial resolution (Fig. 6) the s–u forecast

finally shows signs of serious degradation, reminiscent of

what we saw at higher resolution in the s–p forecast.

Vortex rollup is no longer taking place, even though the

erroneous tilt of the trough line is less serious in Fig. 6

(top panels) than in the 120-km s–p forecast (bottom

panels of Fig. 5). The trough in the 240-km s–p forecast

no longer shows signs of amplification during the 84–

120-h time frame.

As previouslymentioned, because of space limitations

and to avoid being unduly repetitious we will present

material from the other two cases only as needed to

amplify the points made above.

G8 forecasts over central Europe extending 5.5 and

6 days out from the starting date of 0000 UTC 17 No-

vember 2008 (Fig. 7) show the by now familiar differ-

ences between the two FIM versions. The vorticity

streamers in the s–u forecast look tighter, and while the

speed at which they wrap around the vortex appears to

be similar in the two forecasts, the total amount of

vorticity drawn into the vortex—if this can be judged by

looking at a map—appears to be stronger in the s–u

forecast, explaining the extra deepening at 144 h rela-

tive to that in the s–p forecast.

Like in the earlier case, the discrepancybetweens–p and

s–u forecasts becomes more pronounced with lower hori-

zontal resolution. We only show results here for the G7

(60-km mesh size) experiments (Fig. 8). Streamers have

virtually disappeared from the s–p forecast, and there is

only a hint of a cutoff low. The s–u forecast fares better. In

fact, there is a striking resemblance between the vorticity

patterns in the G7 s–u forecast and the G8 s–p forecast.

Three-day and 3.5-day 300-hPa forecasts at G8 reso-

lution over the Indian Ocean sector of the Southern
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FIG. 3. 84-, 96-, 108-, and 120-h forecasts of geopotential height (m) and vorticity (1025 s21) at 300 hPa. The initial

time is 0000 UTC 19 Oct 2008. The top four panels are forecasts based on the native s–u grid, and the bottom four

panels are FIM forecasts using the GFS s–p grid. The horizontal resolution is G8 (;30 km).
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FIG. 4. As in Fig. 3, but for G7 (;60 km) resolution.

2200 MONTHLY WEATHER REV IEW VOLUME 138



FIG. 5. As in Fig. 3, but for G6 (;120 km) resolution.
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FIG. 6. As in Fig. 3, but for G5 (;240 km) resolution.
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Ocean are shown in Fig. 9. The initial time is 0000 UTC

7 February 2009. This is a late summer case; hence, vor-

ticity contrasts are not as strong as in the other cases. The

color scale has been adjusted to take this into account.

Differences in the large-scale vorticity pattern be-

tween s–p and s–u forecasts are minor at G8 resolution,

even though the vorticity filaments appear to be slightly

more coherent in the s–u forecast.

The weakening of the wave-breaking process with

decreasing horizontal resolution is not as pronounced

as in the previous cases, but the by-now familiar pattern

of degradation can still be detected. Despite the rela-

tively low resolution of 120 km in the G6 forecasts

shown in Fig. 10, the remnants of a vorticity spiral are

still very noticeable at 72 h in the s–u forecast (top-left

panel) whereas there is nothing left of it in the s–p

forecast. As in the November 2008 case, the ‘‘amount’’

of vorticity trapped in the vortex appears to be higher

in the s–u forecast, leading to a slightly stronger cutoff

vortex.

An alternate view of the difference between the two

forecasts is provided in Fig. 11. The cross sections shown

correspond in time and grid resolution to the fields in

Fig. 10. The sections slice through the vortex in zonal

direction, thereby creating a butterfly pattern in the ve-

locity field. The jet in the s–u forecast is the stronger one,

by roughly 5 m s21 on the upstream side and 10 m s21

on the downstream side. The difference in strength is

FIG. 7. 132- and 144-h forecasts of geopotential height (m) and vorticity (1025 s21) at 300 hPa. The initial time is

0000 UTC 17 Nov 2008. (top) Forecasts based on native s–u grid. (bottom) FIM forecasts using GFS s–p grid. The

horizontal resolution is G8 (;30 km).
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conceptually consistent with the fact that the doming of

isentropes in the vortex center reduces velocity gradi-

ents along coordinate surfaces on the cyclonic side of the

jet, thereby lessening numerical dissipation of cyclonic

vorticity below jet stream level.

7. Discussion

Evidence we have accumulated so far, although still

largely anecdotal, suggests that FIM, using its native

s–u coordinate, maintains the integrity of tropospheric

vorticity filaments better with decreasing resolution than

the same model using a s–p coordinate adopted from

NCEP’s GFS. The evidence is based on three exten-

sively analyzed cases and on a fewmore cases that were

analyzed in less detail, all chosen from the 2008/09 boreal

autumn and winter season.

Our reasoning for why different trends in the simu-

lation of Rossby wave breaking in the two model ver-

sions are to be expected is straightforward. As argued

earlier, numerically induced lateral mixing of fine

structures generated by filament stretching is least det-

rimental to forecast accuracy in models whose mixing

surfaces coincide with isosurfaces of potential buoyancy.

FIM with its s–u grid represents such a model, at least

above the lowest few kilometers of the atmosphere.

One seeming flaw of the above case study is the jux-

taposition of two different vorticity fields—one, hu, based

on differentiation at constant u and one, hp, based on

differentiation at constant p. For this reason, comparison

FIG. 8. As in Fig. 7, but for G7 resolution (;60 km).
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of hp with hu at the same spatial resolution is less

meaningful than a comparison of the resolution de-

pendence of either the hu or the hp field by itself. We

should therefore refrain frommaking conclusions such as

‘‘filament simulation in the s–u model at Gn resolution

(where n is a natural number) compares accuracy-wise to

simulation in the s–pmodel at resolution G(n1 1).’’ On

the other hand, it seems permissible to conclude that the

deterioration of forecast accuracy with decreasing reso-

lution ismore rapid in thes–p simulations than in thes–u

simulations.

Even if quantitative information cannot be drawn

from it, the exercise of plotting hu on p surfaces and

comparing the resulting distribution with hp plotted on

the same surfaces is still informative. It illustrates the

level of detail in a dynamically relevant tracer field that

in an isentropic coordinate model, by virtue of co-

ordinate surface orientation, is largely shielded from

nonphysical dissipation. The hp field in the FIM version

that features as–p coordinate, on the other hand, directly

feels the impact of numerical dissipation and deteriorates

with time accordingly. It remains to be seen, of course,

whether some degree of deterioration might not be re-

alistic. In other words, the question will have to be ad-

dressed as to whether the FIM equations should retain

their present frictionless form or be amended by explicit

mixing terms.

8. Conclusions

Material has been presented supporting the notion that

flow-following or quasi-Lagrangian vertical coordi-

nates are a viable alternative to the Eulerian coordinates

commonly used in atmospheric circulationmodeling. This

point, of course, has been made before by members of

the University of Wisconsin and University of California,

FIG. 9. 72- and 84-h forecasts of geopotential height (m) and vorticity (1025 s21) at 300 hPa. The initial time is

0000 UTC 7 Feb 2009. (top) Forecasts based on native s–u grid. (bottom) FIM forecasts using GFS s–p grid. The

horizontal resolution is G8 (;30 km).Maps are cropped to show pieces ofMadagascar andAustralia for orientation.
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Los Angeles, schools (Johnson 2000; Arakawa 2000;

Randall et al. 2000, among others). The distinguishing

feature of the present effort is that a quasi-isentropic

coordinate model is being used on a routine basis for

real-time, medium-range global weather prediction. In

comparing FIM with the other two hybrid-isentropic

models routinely used for weather prediction today, FIM

differs from RUC (Benjamin et al. 2004) primarily

in the use of an icosahedral global grid and from the

University of Wisconsin global model (Schaak et al.

2004) in the use of an ALE coordinate.

Not all components of FIM are new. Physics parame-

terization codes were made available by the group re-

sponsible for theGFS at NCEP; FIM development efforts

have greatly benefited from this collaboration. Likewise,

the global fields used to initialize FIM are imported di-

rectly from NCEP.

This having been said, FIM is unique in having com-

bined two novel approaches to numerical weather predic-

tion: 1) icosahedron- and finite-volume-based horizontal

discretization and 2) an entropy-based vertical coordinate.

The present article documents the latter aspect in detail.

In addition, material is presented suggesting that nu-

merical diffusion attributed to the dispersive effects of

the horizontal transport operators can be rendered less

destructive by solving the dynamic equations in an is-

entropic coordinate system. The question of whether

this by itself leads to improved forecast accuracy has not

been explored in this article but will be the subject of

future work.
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FIG. 10. As in Fig. 9, but for G6 resolution (;120 km).
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APPENDIX A

Turbulent Vertical Mixing

The following is a simplified version of a numerical

scheme developed by McDougall and Dewar (1998) for

carrying out vertical mixing in fluid models whose ver-

tical coordinate is a function of the diffused variable(s).

The authors deal with the specific problem of mixing

temperature and salinity in ocean models whose vertical

coordinate is potential density (a function of both tem-

perature and salinity), constrained to remain constant in

each coordinate layer during mixing.

Here we address the simpler problem of solving the

diffusion equation in an atmospheric column where there

is only one diffused variable (potential temperature u)

doing double duty as vertical coordinate. The only vari-

able capable of capturing the effects of thermal diffusion

in this case is the thickness of coordinate layers.

The equations expressing conservation of mass and

heat in a column, basically one-dimensional versions of

the equations listed in the beginning, are

›

›t

›z

›s

� �
s

1
›

›s
_s
›z

›s

� �
5 0 and (A1)

›u

›t

� �
s

1 _s
›z

›s

� �
›u

›z
5�›F

u

›z
. (A2)

The turbulent heat flux Fu 5 w9u9 is usually parame-

terized as Fu 52K›u/›z, where u is the resolved-scale

potential temperature and K is a thermal diffusivity

coefficient.

The flux form of (A2), obtained by combining (A1)

and (A2), is

›

›t
u
›z

›s

� �
1

›

›s
_s
›z

›s
u

� �
5�›F

u

›s
. (A3)

The task at hand is to discretize the above equations

for use in a model framework where stratification is

represented by a piecewise-constant, stair-step u profile.

The discretization will be done by formally integrating

the equations over individual stair steps.

If u is to remain constant in each layer during the

mixing process, Fu must be vertically constant in each

layer. If this were not the case, integrating (A2) over an

individual layer would yield a nonzero right-hand side.

Of the two terms on the left, the second one integrates to

zero since ›u/›z 5 0 inside the layer. [The vertical mass

flux ( _s›z/›s) remains finite.] Hence, a nonzero rhs im-

plies a nonzero tendency term ›u/›t, which clashes with

the stated requirement.

We conclude that for diffusion to leave a mark on the

profile under the constraint Fu 5 const in individual

layers, Fu must be allowed to vary from layer to layer.

The implied infinite heat flux divergence at layer in-

terfaces is consistent with the notion that air crossing an

interface undergoes an instantaneous change in u.

A simple centered finite-difference expression for the

heat flux in layer n is

Fn
u 5

Kn

2

un11 � un�1

zn11/2 � zn�1/2
, (A4)

where fractional superscripts indicate quantities defined

on interfaces.

FIG. 11. Zonal cross sections at 508S, 508–1208E, extracted from 72-h G6 forecasts based on (left) s–u coordinate with

5-hPaminimum layer thickness and (right) GFS s–p coordinate. Features shown in the sections are explained in Fig. 2.
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The central task is to determine the mass flux across

layer interfaces, ( _s›z/›s). For this we integrate (A3) over

an s interval representing an infinitesimal slab bracket-

ing a layer interface. Since the tendency term drops out

as ›z approaches zero and the mass flux ( _s›z/›s) is con-

tinuous in the vertical, we obtain in the limit of zero slab

thickness:

_s
›z

›s

� �n11/2

5
Fn11
u � Fn

u

un11 � un
. (A5)

Expressions (A4) and (A5) encompass the sought-

after solution to the problem of diffusing heat in a stair-

step u profile while maintaining u in individual layers.

Note that, in the absence of externally imposed heat

fluxes, the column integral
Ð
u dz is conserved regardless

of the physical and numerical approximations made in

evaluating the heat flux in (A4).

The heat flux as approximated by (A4) becomes

infinite in massless layers. To avoid division by zero, the

denominator in (A4) must therefore be bounded away

from zero. The parameter representing minimum layer

thickness, together with K and the time step used in

solving (A3), can be tuned to concentrate the effect of

vertical diffusion almost entirely on very thin layers. We

use the scheme in this mode as an alternative to the grid

generator to avoid generating zero-thickness layers in the

isentropic subdomain thatmay result from strongly layer-

dependent diabatic forcing. The advantage of the present

scheme over the grid generator is that it does not produce

local deviations from target u. Suitable parameter values

are 1 m2 for the product of time step and mixing co-

efficient, and 2 3 1023 m for the minimum thickness.

Ideally, vertical mixing should conserve the total heat

content of the column,
Ð
cyT dp. From (11) we note that,

in order to conserve total heat, the variable z in (A1)–

(A5) must be replaced by a variable proportional to

p11k. No other changes are required in the solution

procedure, except that the mixing coefficient K in (A4)

must be rendered dimensionally compatible with the

new vertical coordinate.

In a similar vein, preservation of the total heightÐ
u dP of the column during mixing can be achieved by

using a variable proportional to pk in place of z. Note that

height preservation is incompatiblewith heat conservation.

APPENDIX B

Details of Minimum Thickness Enforcement

It is advisable to smooth out large lateral variations

in layer thickness that typically occur where a hybrid-

ized coordinate layer transitions from the fixed-depth

subdomain to the isentropic subdomain. These variations

are created when, for a given k, the second argument in

the minimum function of (10) is chosen in one grid col-

umn, while the first argument is chosen in a neighboring

column. One way to smooth out the transition, short of

exchanging information among neighboring grid col-

umns, is to increase layer thickness in situationswhere the

two arguments are of similar magnitude. This is the

purpose of the ‘‘cushion’’ function originally introduced

into hybrid-coordinate ocean modeling by Bleck and

Boudra (1981) and later adapted for atmospheric use by

Bleck and Benjamin (1993). Use of the cushion function

entails replacing (10) by

P
k11/2

5 min[P̂
k11/2

, P
k�1/2

� cushn(P̂
k�1/2

�P
k11/2

, DP
0
)]. (B1)

In the two extreme cases in which P̂k�1/2 �Pk11/2 is ei-

ther large negative or large positive in comparison with

DP0, the cushion function is designed to replicate the

functionality of (10). In other words, cushn(a, b) returns

a if a� b, and it returns b if2a� b (b. 0). Between the

two extremes, cushn varies smoothly, returning values as

high as 2 max(a, b). Inmany cases, this inflates a layer if its

potential temperature is close to target, thereby softening

the lateral interface height contrast between locations

where the underlying layer is isentropic andwhere it is not.

If more effective interface smoothing in the s–u tran-

sition region is deemed necessary, a sideways-looking

smoothing algorithm may be required.

At the time of this writing, the minimum thickness

value DP0 is set as follows:

1) A default value DP0(k) is specified for each layer k.

Typical values (stated here in pressure units for

easier reference) are 3 hPa in the bottom layer,

gradually increasing to 10 or 20 hPa in layers above.

2) In an attempt to mimic the vertical spacing of con-

ventional s-coordinate layers, all DP0(k) are multi-

plied by the factor (psrf 2 ptop)/(1000 hPa 2 ptop),

where psrf is the surface pressure and ptop is the

pressure level (400 hPa or smaller) where coordinate

surfaces in a conventional s-coordinate model cease

to be terrain-following.

3) Starting in the lowest layer and moving up the col-

umn, Pk11/2 is compared with the lesser of (B1) and

P1/2 � �k

n51DP0(n). If it exceeds the minimum of

these two values, it is replaced by thatminimum. This

is done recursively (i.e., altered interface values af-

fect the inflation test in layers above).

4) The lowest layer not in need of inflation is labeled

ksu; it marks the transition from the s to the u

subdomain.
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5) The upper interface of layer ksu stays fixed by defi-

nition, but very thin isentropic layers qualifying for

inflation based on (B1) can occur higher up in the

atmosphere. To keep these from unnecessarily be-

ing inflated, the value DP0(k) is reduced in layers

ksu 1 1, . . ., ksu 1 4 by the factors 0.4, 0.2, 0.1, and

0.05, respectively. The factor 0.05 is also used in

layers k . ksu 1 4.

Discretization of a continuous profile u(P) in terms of

a stair-step profile is not unique, because stair steps can be

broken into smaller steps or combined into bigger ones

without violating any continuity or conservation princi-

ple. This ambiguity can lead to computational modes in

the vertical layer structure, leading to the gradual disap-

pearance of, say, odd-numbered layers accompanied by

a thickening of even-numbered ones. Initial experiments

with FIM indeed revealed a propensity for amplifying this

mode. To suppress it, a special algorithm has been added

to the grid generator.

The algorithm scans each grid column for sequences

of 5 DP values, numbered DP1, . . ., DP5, that satisfy the

following three conditions:

DP
1
,DP

2
,

DP
5
,DP

4
, and

DP
3
, min(DP

2
, DP

4
).

If all three conditions are met, layer 3 is inflated by

drawing mass from both layers 2 and 4 such that 1) the

column integral of u is conserved and 2) DPnew
3 5

min(DPnew
2 , DPnew

4 ). Requirement 1 leads to the con-

straint

DP
2
� DPnew

2

DP
4
� DPnew

4

5
u
4
� u

3

u
3
� u

2

,

which may put a limit on the mass transfer stipulated by

requirement 2. The resulting interface displacements

are added to those associatedwith the primary regridding

process.

Suppression of the layer-thickness computational mode

improves the performance of the column physics pa-

rameterization scheme, which has been found to be sen-

sitive to large variations in layer thickness.
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